Impairment of Auditory-Motor Timing and Compensatory Reorganization after Ventral Premotor Cortex Stimulation
نویسندگان
چکیده
Integrating auditory and motor information often requires precise timing as in speech and music. In humans, the position of the ventral premotor cortex (PMv) in the dorsal auditory stream renders this area a node for auditory-motor integration. Yet, it remains unknown whether the PMv is critical for auditory-motor timing and which activity increases help to preserve task performance following its disruption. 16 healthy volunteers participated in two sessions with fMRI measured at baseline and following rTMS (rTMS) of either the left PMv or a control region. Subjects synchronized left or right finger tapping to sub-second beat rates of auditory rhythms in the experimental task, and produced self-paced tapping during spectrally matched auditory stimuli in the control task. Left PMv rTMS impaired auditory-motor synchronization accuracy in the first sub-block following stimulation (p<0.01, Bonferroni corrected), but spared motor timing and attention to task. Task-related activity increased in the homologue right PMv, but did not predict the behavioral effect of rTMS. In contrast, anterior midline cerebellum revealed most pronounced activity increase in less impaired subjects. The present findings suggest a critical role of the left PMv in feed-forward computations enabling accurate auditory-motor timing, which can be compensated by activity modulations in the cerebellum, but not in the homologue region contralateral to stimulation.
منابع مشابه
Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery.
Although recent neurological research has shed light on the brain's mechanisms of self-repair after stroke, the role that intact tissue plays in recovery is still obscure. To explore these mechanisms further, we used microelectrode stimulation techniques to examine functional remodeling in cerebral cortex after an ischemic infarct in the hand representation of primary motor cortex in five adult...
متن کاملFunctionally Specific Reorganization in Human Premotor Cortex
After unilateral stroke, the dorsal premotor cortex (PMd) in the intact hemisphere is often more active during movement of an affected limb. Whether this contributes to motor recovery is unclear. Functional magnetic resonance imaging (fMRI) was used to investigate short-term reorganization in right PMd after transcranial magnetic stimulation (TMS) disrupted the dominant left PMd, which is speci...
متن کاملReorganization of the human ipsilesional premotor cortex after stroke.
The substrates that mediate recovery of motor function after stroke are incompletely understood. Several primate and human studies proposed the involvement of the premotor cortex of the lesioned hemisphere. Here, we studied four chronic stroke patients with focal subcortical lesions affecting the corticospinal outflow originating in the primary motor cortex (M1) and good motor recovery. We test...
متن کاملTwo types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study.
Reorganization after early brain injuries is not only determined by the maturational stage of the CNS at the time of the insult (timing), but also by the structural properties, location and extent of the lesion. This study addresses the impact of different lesion extents on the type of reorganization induced in a cohort of patients with lesions of uniform structure and location (unilateral peri...
متن کاملUpper limb recovery after stroke is associated with ipsilesional primary motor cortical activity: a meta-analysis.
BACKGROUND AND PURPOSE Although neuroimaging studies have revealed specific patterns of reorganization in the sensorimotor control network after stroke, their role in recovery remains unsettled. To review the existing evidence systematically, we performed activation likelihood estimation meta-analysis of functional neuroimaging studies investigating upper limb movement-related brain activity af...
متن کامل